
Pergamon 
J. AppL Maths Mechs, Vol. 62, No. 2, pp. 201-206, 1998 

© 1998 Elsevier Science lad 
All fights reserved. Printed in Great Britain 

PI I :  S0021-8928(98)00026-4 O021-8928/98/$--see front matter 

DEGENERATE BIFURCATION GIVING RISE TO 
A CYCLE IN MULTIPARAMETER PROBLEMS 

IN HYDRODYNAMIC S"f 

A. L. A F E N D I K O V  and V. P. V A R I N  

Kovolev, Moscow Region 

(Received 14 May 1996) 

An algorithm for constructing the Lyapunov-Schmidt seres in multiparameter problems with quadratic non-linearity is proposed, 
which enables a degenerate bifurcation of cycle generation to be investigated using the Weierstrass preparation theorem. The 
use of this algorithm to study multiparameter problems of hydrodynamics, namely, Kolmogorov flow and the Couette-Poiseuille 
flow in a plane channel i.,; considered. © 1998 Elsevier Science Ltd. All rights reserved. 

One of the methods of studying bifurcations which generate to a cycle (the Lyapunov-Schmidt method) 
was applied independently by a small number of researchers [1-3] to the problem of the onset of 
self-induced oscillations in a fluid. Later it was shown [4, 5] how to obtain an inductive construction 
of expansions in the subcritical parameter e = 0(R - R0) 1/2, 0 = -1 ,  where R0 is the critical 
Reynolds number corresponding to the stability loss in the main flow. A constructive procedure for 
constructing such series was presented in [6, 7] and these expansions were used to study the stability 
loss in Poiseuille flow. 

However, expansions in e can be constructed only under non-degeneracy conditions, which in 
multiparameter problems may be violated on a certain manifold of unity codimension in parameter 
space. 

It is well known [1] that expansions in powers of the amplitude are more general. They can be used 
to study branching .solutions in the neighbourhood of a degenerate point. However, in this and subse- 
quent papers insufficient attention was devoted to the algorithmic aspect of constructing such expansions 
because for non-linearities of general form the problem is intractable. 

The purpose of the paper is to present explicit formulae which enable the expansions to be constructed 
in problems of hyd:rodynamics, and to show how these results can be applied to the Kolmogorov and 
Couette-Poiseuille problems. 

1. APPLICATIONS OF THE L Y A P U N O V - S C H M I D T  R E D U C T I O N  
M E T H O D  TO THE STUDY OF THE ONSET OF S E L F - I N D U C E D  

OSCILLATIONS IN A FLUID 

We recall briefly, making no pretensions to originality, the well-known construction of the Lyapunov- 
Schmidt method (see [1-3]). We consider the following evolution equation with quadratic non-linearity 

i~u/~t+RoAou+gAu+B(u,  u)--0, I ~ R  (1.1) 

where A0 andA are linear and B(u, , )  are bilinear bounded operators acting from a real Hilbert space 
G to a real Hilbert space H such that G C H, and whereA and B depend on ~ ~ R n. Looking for solutions 
of problem (1.1) that are 2~/c-periodic in time, we obtain 

c~u I at + RoA0u + eAu + B(u, u) - 0 (1.2) 

We denote by G2~ and H2~ the spaces of square integrable functions with values in G and H, 
respectively, and by G2C~ and J;-/~2~ the complexifications of these spaces. The scalar products in H~2~ 
will be denoted by 
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1 f(u(t), v(t))ncdt ( . ( t ) ,  ,, ( t ) ) .?.  = o 

Proposition 1. The operator Lu = cnOu/at + RoA o has a double semisimple eigenvalue )~ = 0 with the 
corresponding eigenfunctions ~P0 = e'Tx0 and ~P0 = e-itXo, where X0 E/_/c. 

Note that X0 is an eigenfunction of the eigenvalue problem )~X + RoA0x = 0 corresponding to the 
eigenvalue ico. Let ~ be an eigenfunetion of the problem. Since )~ = 0 is the semisimple eigenvalue, an 
eigenfunction ~¢0 = eit~ of the adjoint operator L*u = --CoOU/Ot + RoAo*u exists such that 

Let 

(IPo' ~0) =1 (1.3) 

(Q is the projection onto the kernel of L). 

Proposition 2. L is a Fredholm operator, i.e. the equation Lu = f i s  solvable fo r f  ~ H2~ if and only 
if (f, ~0 ) = ( u, 00 ) = 0, and L is an isomorphism of the spaces PGz~ and PH2r 

We write (1.2) in the form 

Lu=(co-c)dul  d t -~Au-B(u,  u) (1.4) 

Then, applying P and Q to (1.4), we obtain the system of equations 

L P u  = -P{OMu l dt + ~.Au + B(u, u)} (1.5) 

1.42u=-Q{OMuldt+eAu+B(u, u)} (1.6) 

where co = (c - Co). 
By Proposition 2, L realizes an isomorphism of the spaces PG2~ and PH2n. Consequently, putting 

u = o + ~,Ree~x0, where ( o, 00 ) = 0, from (1.5) we can find u(~,ro, e) using the implicit function theorem. 
Substituting the resulting expression into (1.6), we obtain the bifurcation equation 

0= if(C-Co, y2, ~) =y(i~+gB+y2Do +./4/)1 +¢xlq,2G+...) (1.7) 

If 

ReDo ~ 0 (1.8) 

then by the implicit function theorem co and e can be given by series of the form 

o =  2", 
n=l n=O 

If we assume that 

(1.9) 

then 

y =  ]~y,,(Oe) °'+ut2, co= ~,c2,,(0~)", 0=+1 (1.11) 
n=O n=l 

where 0 defines the direction of the bifurcation. 
Note that the procedure for determining the constants {Y/-1; c~.}~=1 described earlier [6, 7] omits 

the stage when the implicit function theorem is applied to Eq. (1.5), and the above constants are 
determined along with the expansion 

!1 = ~ll j(OE) (j+l)12 (1.12) 
j=0 

ReD O ~ 0 (1.10) 
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-If ReDo = 0 (and so ~1 = 0) and ~2 * 0, the expansions for T and co should be sought in terms of the 
powers of (0~) TM, 0 = - 1. Condition (1.4) means that for an eigenvalue Z,(e) of the problem 

kZ + (RoAo + c:A)Z --- 0 (1.13) 

satisfying the condition ~,(0) = ico the relation 

holds. 
When an additional real-valued parameter ot appears in the problem, as, for example, in the case of 

the Poiseuille flow in a plane channel, and the condition 

ReT,,(e, or) = 0 

defines a neutral curve on the plane (e, or), condition (1.8) for a fixed ct. means that the straight line 
ct = Qt, intersects the neutral curve transversally. 

Obviously, condition (1.8) may also be violated. In particular, for PoiseuiUe flow in a plane channel 
this condition is violated at the maximum point of the neutral curve (R1, or1) -- (8600, 1.097311). In 
this case the wave number ot is a natural bifurcation parameter. The dependence of the equations of 
motion on ot turns out to be quite complicated (cf. [6]) and the general formulae from which to obtain 
expansions of type (1.9) are somewhat less effective. 

It is well known that for Poiseuille flow in a plane channel, condition (1.10) is violated at the 
point (R3, or3) - (,5842, 197, 0.906672976) [7, 8]. Since 62(ot 3 , 0), introducing a small parameter 
h = ot - ot3, one can rewrite the second equality in (1.9) in the following form by the Weierstrass 
preparation theorem 

F.- ~f . j (h)T 2j = d(¥ 2, E, h)[Ho(E:, h)+ HI(~ h)y 2 + g2(o~3)'y 4 ] 
j=l 

Here d, H0 and Hi are analytic functions uniquely defined by (1.9), such that d(O, 0, 0) = 1 and 
I-Io(O, o) = Hi(O, O) = O. 

The equation 

Ho(e, h) + H1(8, h)~ + e2(ot3)~ = 0 (1.14) 

which is equivalent to the second equation in (1.9) near zero, enables us to find a fold in the set of 
solutions of problem (1.2). Therefore the analysis of degeneracies in phase space provides additional 
information on the branching solution, which is completely lost if one considers bifurcations occurring 
under the variation of a single parameter with the remaining parameters fixed. 

In the case of higher order degeneracies it is possible for branching solutions (secondary flows) to 
exhibit even more complex behaviour. For finite dimensional problems an analysis of various bifurcations 
up to degeneracies of codimension three has been carried out in [9, 10]. However, to apply these results 
it is necessary to know the coefficients in the second expansion (1.9). 

2. AN A L G O R I T H M  FOR C O M P U T I N G  THE C O E F F I C I E N T S  IN THE 
L Y A P U N O V - S C H M I D T  SERIES 

According to the above discussion, the solution of problem (1.2) can be written as 

u = u + " # . e ~ ,  (u, ¥ )  = O, "y e R ÷ 

and u, c and c can be expanded in a power series in 7- Putting u0 = Re 90 to make the formulae more 
symmetric, we shaU determine the expansions 

u =  ~,o.V n+', c-co--~,co,~",  e=~ ,e .V"  (2.1) 
n=O nffil n=l  

from the sequence of problems 
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By Proposition 2 
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Lu n = ~ n , n = O ,  1 .... 

f ~ f au j I ~-' } 
dP n =-,~ ~, I(oa_ j ~ + ~ n _ j A u j  + ~ B  (uj, un_j_;) [j ol, at j=o 

(~n, ¥0) = 0 

is a solvability condition for (2.2). For n = 0 we obtain the linearized problem 

co~oolat + RoAooo = 0 

and for n = 1 we have 

Lu I = -{o),i}u o l at + eA u o + B(v o, U o ) + B(uo,Uo)} 

(2.2) 

(2.3) 

n = O ,  1 . . . .  

Therefore the solvability condition (2.3) can be reduced to 

(F,,,, ~).c =0 (2.4) 

The key observation is that if ImFn0 = lm wn0 = 0 is fixed, the complex trigonometric polynomials F n 
and wn are uniquely defined. To verify this, we use the fact that 

B(ok, u._k_,)=tARe(B(w~, w._k-l)+ l~wk. ~.-k-,)) 

in the following elementary assertion. 

L e m m a .  Let (I~n_ l be a given real-valued trigonometric polynomial of degree n such that 

n 
~n-I =Re ~,ake i~, a o = 0  

/c=-n 

Then there is a unique complex-valued trigonometric polynomial F n _  1 = ~-~¢ffilFn_l,k eikl such that 
ReFn-1 = ~n-1, where F~-1: = ak + a-k. 

To prove the lemma it suffices to observe that 

Re ~ at~e ila = Re ~(a  k +~_k)e ila 
k=-n k=l 

Now from 

we obtain 

I n  [ ~¢ .  h l n - I  ] 
0 ,  = -Re~ ~'. Imn-j "7"~+en_jAwjl+-- ~B(w,, [j--o~, at ) 2j.o , w._j_.)+B(w~. ~._~_,) 

[ 1 n- I  . . n - i  n - I  l 

J 

n+l .. 
un =Rewn, wn = ~,e*Zw,~ 

k=O 

tl+l .. 

~n =ReFn, Fn = ~,e"~F,e,, 
k=O 

Using the condition B = R e ( A ~ ,  ¥0) * 0, we find e = CO 1 = 0. If we use the fact that L is a Fredholm 
operator, the solvability conditions for (2.2) yield, by induction, that ez~+l = e02n+l = 0 and un is a 
trigonometric polynomial in t of degree n + 1, which is even ifn = 2 /+  1 and odd ifn = 2/. Consequently 
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where 

and for k ~ 0 

Pink mia(~+l,k) . ~n(a+l,n-j) 
= B(wjt, wn-j-Lk-t), q~o = Re ~ B(wjt, ~n- j -LI)  

immax(O,k + j -n )  I=0 

n i n ( j + t , n - j + k )  a,~a(j+l,n-k-j) 
q;,~ = ~ ~w~k, ~,_j_~.,_k~+ I~ Bt~k, w,_j_~,~_D 

s=k P=O 

Therefore the problems 

Lkwnk=Fn,, nffi0, 1,...; k=0 ,  1 ..... n+l ;  Lkf ikco+RoA o (2.5) 

for the complex-valued functions Wnk are uniquely defined. These problems are solvable for k ~ 1 by 
Proposition 1, and ~:he solvability condition for k = 1 can be satisfied by choosing the constants {0~p 

eJ'For~ n = I the solvability condition gives the relation 

R% +e2B+~(Bo(~o, wt2)+2Bo(W o, Wlo), ~¢o)--0 (2.6) 

where  B0(u, u)  = B(u, u) + B(u,  u). 
It  is obvious  that  if a numer ica l  a lgor i thm is const ructed which enables  us to de t e rmine  ¢o2 and  e2 

once  the  appropr ia t e  functionals are computed ,  then the same algori thm can be  used without  any ma jo r  
modif icat ions  to de t e rmine  any finite n u m b e r  of  coefficients {o~, ej}~=2 successively using the  m e t h o d  
descr ibed above.  There fo re ,  using the results ob ta ined  in [9, 10], one  can investigate the behav iour  of  
b ranch ing  solut ions in the ne ighbourhood  of  a degenera te  point  o f  as high an o rder  as desired. 

T h e  limit o f  applicabil i ty of  the  m e t h o d  in quest ion in specific hydrodynamical  p rob l ems  is def ined 
by the accuracy of  the  numer ica l  solut ion of  the eigenvalue and boundary  value p rob l ems  (2.5). 

3. D E G E N E R A T E  B I F U R C A T I O N S  IN T H E  K O L M O G O R O V  
A N D  C O U E T T E - P O I S E U I L L E  P R O B L E M S  

In 1959 Kolmogorov proposed to consider a model problem on the viscous fluid flow in a plane channel subject 
to a sinusoidal external force, with the no-slip condition replaced by the periodicity condition along they coordinate 
normal to the channel axis x. 

An analysis of the linear stability of Kolmogorov's flow revealed [11, 12] that the minimum critical Reynolds 
number corresponds to the wave number ~ = 0, the neutral curve is defined by a monotone increasing function 
over the interval ~t ~ (0, 1), and the flow is absolutely stable for ~ > 1. 

On the other hand, for Kolmogorov flow with other external forces (generalized Kolmogorov flows) the situation 
may turn out to be different, and the study of this class of flows is certainly interesting [13]. We shall assume that 
the mean velocity Q = (0, 8) and external force F = (yf(y), 0)' are fixed, f0')  being a trigonometric polynomial. 
Then the steady-state solution has the form U.(y) = (V(y), 8)', where V satisfies the equation 

vV"(y) - 8v'ty) + ~(y) ~ 0 

Since y is arbitrary, we can assume that II V IlL- = 1 and we introduce the Reynolds number R = y/v. Computations 2 
show that if 8 = 0, then a = 0 corresponds to the minimum Reynolds number for anyf(y). 

The classical Kolmogorov flow corresponds to a velocity profile Uk(y) = (y/v siny, 8)' and 5 = 0. Our computations 
revealed that R ~ o~ as 8 ~ 1 for a fixed ¢t ~ (0, 1). For 8 > 1 the Kolmogorov flow is stable for all Reynolds 
numbers. 

For generalized Kolmogorov flows for 8 > 1 the neutral curve may take the characteristic shape for problems 
with no-slip conditions at the channel walls. For example, for the velocity profile U0') = cosy + sin 2y the dashed 
line in Fig. 1 shows the neutral curve for 8 = 0, the dash-dot line for 5 = 0.8 and the solid line for 8 = 1.1. 

Computations indicate~" that for the Kolmogorov flow with velocity profile Uk(y) the curves el(or, 8) = 0 (the 
dashed line in Fig. 211 and e2(ct, 8) = 0 (the dash-dot line) have points of intersection. At these points a degenerate 
bifurcation of codimension three occurs. The solid line in Fig. 2 is the boundary of the domain outside of which 
Kolmogorov flow is stable in the linear approximation. 

For the Couette-Poiseuille problem computations show that the curves 8~(ct, 8) = 0 and e2(ct, 8) -- 0 have two 
points ofintersection:A~ = (¢q, 81) = (0.691398427, 0.069459369) andA2 = (~t2, 82) - (0.516880749, 0.141800789). 

tDetailed data are available on request. E-mail: varin@spp.keldysh.ru. 
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Fig. 1. Fig. 2. 

Let us recall that in the problem on the Couette-Poiseuille flow it is assumed, apart from a constant pressure gradient 
along the channel axis, that the velocity of the walls ulv=± ~ = ±Vi s  also constant. On changing to dimensionless 
coordinates, this leads to the plane Couette-Poiseuille flow u = (1 _y2) + 5y turning into plane Poiseuille flow at 
8 = 0 .  

Let us return to expansion (1.9). The degeneracy el(Ct,, 5,)  = 0 means that for these parameter  values the 
branching solution is given by a power series in (0(R -Ro))U4, 0 = ±1. If 5,  is fixed and the wave number ct is 
considered as an additional bifurcation parameter, a fold occurs near the point (R0(ct,, 5,) ,  et,) in the case e2(et,, 
5,)  ~ 0, the projection of which onto the (ct, R) plane is given by the discriminant curve of Eq. (1.14). 

The inclusion of an additional bifurcation parameter 5 into consideration leads, for example, to the fact that 
for each point of the neutral curve (R0(ct,, 5,  (ct)) the branching solution can be expanded in a power series in 
(0(R -R0))1/4, 0 = ± 1. If the value of (ct c, ~c) corresponding to the intersection of the curves ez(a, 5) = 0 and e2(et, 
5) is fixed, the branching solution can be expanded in a power series in (0(R - R0)) 1/8, 0 = ±1, and the set of 
branching solutions for the parameters close to (¢tc, 8c) has a more complex structure than in the previous case 
and is described by a bicubical equation. More detailed information on this finite-dimensional problem can be 
found in [9, 10]. 

This  r e sea rch  was s u p p o r t e d  financially by the Russ ian  F o u n d a t i o n  for  Basic  Resea rch  (96-01-01411) 
and  the  In t e rna t i ona l  Science F o u n d a t i o n  (M3W000) .  
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